1. Masters Online
  2. Big Data
  3. Big Data Online
  4. Master Data Science Analytics
MASTER EN DATA SCIENCE & ANALYTICS

Máster en Data Science & Analytics

Máster en Data Science & Analytics

MIOTI

  • Lugar/Modalidad:

    Online

  • Duración:

    8 Meses / 400 Horas / 720 Horas de Prácticas

  • Fechas:

    Octubre 2026


Descripción

El máster en Data Science con el que impulsarás tu carrera

El mercado actual requiere profesionales que sepan manejar, analizar e interpretar los datos para servir a los objetivos de negocio. Las empresas necesitan estos perfiles especializados que combinen la analítica y la estrategia con la parte técnica, por lo que la formación en esta disciplina se convierte en un valor diferencial para los recién graduados.

En MIOTI te preparamos para esta realidad tan prometedora. Con nosotros aprenderás desde conceptos básicos de preprocesamiento de datos, Inteligencia Artificial y programación en Python, hasta los últimos modelos de redes neuronales profundas y reconocimiento de imágenes. Trabajarás con data sets reales aplicando machine learning y resolviendo problemas de negocio en clase y en las prácticas.

Después de nuestra formación y la experiencia en empresas estarás preparado para cualquier reto en el mundo laboral, no necesitarás periodo de adaptación.

¿Por qué Data Science?

- Data Scientist es la demanda de trabajo número 1 en el mayor portal de empleo especializado y seguirá en esa posición en los próximos años.

Fuente: Glassdoor.

- Según LinkedIn, se ha producido un aumento del 650% en los puestos de trabajo de la ciencia de los datos desde 2012.

Fuente: LinkedIn.

Bolsa de Empleo y Salidas profesionales

Algunas de las salidas profesionales que estarán a tu alcance:

- Data Scientist

- Data Engineer

- Data Analyst

- Deep Learning Expert

¿Has realizado el curso? Comparte tu opinión

Temario Máster en Data Science & Analytics 2025

bMódulo 1: Máster en Data Science & Analytics

- Introducción: Introducción a MIOTI, iniciación en las plataformas que se van a utilizar durante el programa e iniciación en el curso.

- Python for Beginners: Introducción a la programación y preparación para su aplicación en Data Science.

- Data Science fundamentals: Introducción a conceptos fundamentales de data science. Presentación del marco de referencia general.

- Data Science with Python: Python como framework del especialista de data science. Desarrollo de notebook, uso de pandas, numpy, matplotlib. Procesamiento de datos de fuentes estructuradas (CSV, REST, SQL, Logs) y no estructuradas (Web, Spark, Cassandra).

- Statistics for Data Science: Repaso de los fundamentos de estadística necesarios para dominar la ciencia de los datos.

- Data Pre-processing: ¿Cómo preprocesar adecuadamente

los datos? Aplicación de filtros, anonimización de datos, selección de atributos, sampling y reducción de dimensionalidad.

- Data Visualization: Herramientas para visualización de datos. Introducción a las técnicas y librerías mas utilizadas.

- Predictive Analytics: Introducción al análisis de series temporales, revisión de los mejores algoritmos disponibles. Desarrollo de casos de uso de detección de anomalías y predicción de series.

- Machine Learning: Introducción a los problemas de clasificación y clusterización. Construcción de data sets y evaluación de resultados.

- Machine Learning II: Revisión de los principales algoritmos de aprendizaje supervisado bayes , vectores de

soporte, regresiones, y no supervisado y su aplicación.

- Entrepreneurship: Entendimiento de los nuevos modelos de negocio basados en Data Science que están surgiendo en el sector empresarial e industrial, y las técnicas para implementar ideas basadas en esta tecnología.

- Deep Learning: Introducción de conceptos fundamentales de las redes neuronales profundas. Recorrido teórico práctico, aprender a utilizar las herramientas más importantes y a implementar soluciones desde cero.antagónicos) para la gestión de datos.

- Computer Vision: Introducción a conceptos fundamentales de las técnicas de Visión por Computadora (Computer Vision). Recorrido teórico práctico de las principales técnicas.

- Natural Language Pre-processing: Introducción a conceptos fundamentales de los mecanismos empleados para la comunicación entre personas y máquinas por medio del lenguaje natural. Conocer las interacciones y su aplicación en el campo de inteligencia artificial.

- Entrepreneurship II: Profundizar en los nuevos modelos de negocio basados en data science que están surgiendo en el sector empresarial e industrial, y las técnicas para implementar ideas basadas en esta tecnología.

- Kaggle Challenge: Escogeréis y desarrollaréis un reto para mediros con los mejores profesionales del mundo y así valorar lo que se ha aprendido durante el máster.

- Machine Learning III: Aplicación de redes convolucionales y modelos recurrentes profundos como TensorFlow en aplicaciones prácticas con imágenes. Implementación y diseño de modelos neuronales para la resolución de problemas modelización/clasificación y diseño de GAN (modelos generativos

antagónicos) para la gestión de datos.

- Reinforcement Learning: Introducción a conceptos del aprendizaje por refuerzo. Conocer las formas de calcular medias y promedios móviles, procesos de decisión de Markov, programación dinámica, diferencia temporal de aprendizaje y métodos de aproximación.

- Big Data for Data Science: Conceptos fundamentales de soluciones Big Data. Arquitecturas de referencia y modelos de adopción con las principales tecnologías actuales incluyendo procesos de ingesta, análisis y visualización de datos en tiempo real.

- New Technologies: Iniciación a Blockchain, Industria 4.0, Internet of Things y Robotics.

- Data Science for Business: Aplicaciones prácticas de la AI para negocio, Algorithm Driven Companies, Skills Transformations, Data Driven Companies.

- Soft Skills: Expertos profesionales darán una clase magistral de como presentar proyectos y skills de oratoria y negociación.

- Project Management: Conocer las fases de desarrollo e implementación de proyectos, identificar aquellos elementos a tener en cuenta para facilitar la ejecución minimizando las incidencias previsibles que se encuentran en este tipo de proyectos.

- Final Project: Desarrollo de un proyecto final para afianzar los conocimientos adquiridos durante el programa.

Prácticas remuneradas incluidas

Con el Máster en Data Science & Analytics pondrás en práctica lo aprendido en clase en empresas como P&G, Mercedes-Benz, Pelayo, Securitas Direct, Ferrovial, Exolum, Janssen o Unlimiteck, entre otras. Tendrás la oportunidad de conocer de primera mano proyectos reales de Data Science mientras rentabilizas tu formación.

+ ver más
SOLICITA INFORMACIÓN

También te pueden interesar estos Programas Destacados


Destacado
Curso relacionado de GRUPO ATRIUM

¡Impulsa tu carrera con nuestro máster de Data Science, Big Data y Data Analytics! Disfruta de clases online en directo, prácticas en empresas líderes y adéntrate en las últimas tecnologías del mercado. Aprovecha la gran demanda de especialistas y abre las puertas a innumerables oportunidades laborales. ¡Inscríbete ahora y transforma tu futuro!

¿Por qué es importante?

- Obtendrás una certificación reconocida internacionalmente...


GRUPO ATRIUM

Curso relacionado de UNIVERSIDAD INTERNACIONAL VALENCIANA (VIU)

En nuestro mundo digital en constate evolución, los datos se han convertido en el activo más valioso para cualquier organización, independientemente de su sector. La capacidad de recopilar, procesar y analizar información de manera efectiva es clave para la competitividad empresarial, la innovación científica y la mejora de los servicios públicos...


Curso relacionado de EAE ESCUELA DE ADMINISTRACION DE EMPRESAS

MÁSTER EN BUSINESS ANALYTICS Y DATA STRATEGY PT


Madrid12 Meses / 60 ECTSMayo / Octubre

Este máster está diseñado para profesionales que desean mejorar sus habilidades en análisis de datos y estrategias de datos a nivel de negocios, combinando teoría y práctica en un formato flexible.

¿Por qué estudiar el Máster en Business Analytics & Data Strategy en EAE Madrid?

1. Transformación profesional

Consigue una visión global de la arquitectura y el ciclo de vida de los datos, así como las características de las distintas herramientas y tendencias del sector...


Curso relacionado de EAE ESCUELA DE ADMINISTRACION DE EMPRESAS

GLOBAL MÁSTER EN BUSINESS ANALYTICS AND DATA STRATEGY


Madrid12 meses / 60 ECTSMayo / Octubre

El Global Master en Business Analytics & Data Strategy que presenta EAE Business School en su nueva modalidad Híbrida, se imparte desde una óptica que engloba tanto la tecnología como la gestión, con el objetivo de enseñarte a diseñar y gestionar proyectos de Big Data y a sacar la máxima rentabilidad al tratamiento de datos masivos...


Curso relacionado de UNIVERSIDAD INTERNACIONAL VALENCIANA (VIU)

Big Data es mucho más que un concepto de moda, es una necesidad. Actualmente, todas las industrias que generan y consumen datos de múltiples tipos y fuentes, necesitan profesionales y expertos en Big Data. Por ello, estos empleos se encuentran entre los más demandados a nivel mundial. Por ejemplo, según LinkedIn, cerca del 79% de las ofertas publicadas en portales de empleo están relacionadas con trabajos de Big Data y/o Ciencia de Datos...


Curso relacionado de INSA ESTUDIOS SUPERIORES

MÁSTER EN BIG DATA AND DATA INTELLIGENCE


Barcelona1 año académicoConvocatorias en Marzo y ...Convocatorias en Marzo y Octubre

La gestión inteligente de datos se hace cada vez más necesaria sobretodo actualmente, en el que los conceptos tradicionales han ido evolucionando a estructuras más complejas y diversas y por lo tanto necesitan de fuentes de mayor calidad y consistencia.


Formación relacionada


Haz tu pregunta